Enlaces a documentos sobre el asunto
PARAFERNALIAS MATEMATICAS. * Cuaderno de Bitácora dedicado preferentemente al aprendizaje y enseñanza de las matemáticas y a experiencias personales relacionadas con ello, aunque ocasionalmente se traten también otros temas. ____________________________________________________________ ADVERTENCIA: PRECUACIÓN, EN ESTE BLOG LA MAYOR PARTE DE LAS ENTRADAS SE RENUEVAN DE VEZ EN CUANDO, AÑADIÉNDOSE USUALMENTE TEXTO Y ENLACES, PARA MEJORAR LOS CONTENIDOS POCO A POCO.
Sagacomic - Lothlórien: Reseña: El fénix en la espada: El fénix en la espada. L as crónicas nemedias /3. Robert E. Howard. Reseña de: Consuelo Abellán Colodrón. Sportula. Gijón, 2021. Edición di...
Antes de comenzar, una página de este mismo blog, con bastante material en torno a Hegel, que servirán de complemento a este curso (muchos de los materiales son también del profesor Carlos Pérez Soto)
https://parafernaliasmatematicas.blogspot.com/2020/05/hegel.html
A partir de ahora, presento el curso
En esta entrada podrás acceder a los materiales complementarios y de apoyo a las clases que proporciona el profesor Carlos Pérez Soto, pero NO ESTÁN DISPONIBLES LAS GRABACIONES DE LAS CLASES, que sólo son accesibles a las personas matriculadas en el curso. Más adelante se puede acceder a la página de facebook que informa sobre las condiciones para disfrutar del curso.
Me he permitido añadir en cada clase algún comentario y sobre todo enlaces a documentos sobre cada tema, pero teniendo en cuenta que soy novato y principiante en filosofía, no hay que dar por ssupuesto que dichos documentos sean pertinentes o útiles, aunque a mí me lo parezcan.
Por otra parte, en las entradas correspondientes a las clases, sobre todo las del segundo semestre, he añadido vídeos y/o audios del profesor Carlos Pérez explicando temas parecidos o iguales a los de este curso, pero pertenecientes a cursos anteriores impartidos por él hace años.
También debo añadir que no es extraño que modifique las entradas, cada una de las cuales corresponde a una lección, mientras leo los contenidos, añadiendo más información encontrada en internet y/o algunos comentarios
Como botón de muestra, una clase del curso "Introducción al pensamiento de Hegel" impartida on line por el profesor Carlos Pérez Soto, durante el primer semestre del año 2021
https://www.youtube.com/watch?v=WQHGJJTp95c
https://www.youtube.com/watch?v=WQHGJJTp95c
Más información sobre el curso
Historias de Matemáticas: El arco iris es una circunferencia: El arco iris es un 'conjunto ordenado' de arcos monocromáticos dispuestos de manera circular, que comparten el mismo centro. Aparece...
Historias de Matemáticas: Georg Cantor y la Teoría de los Infinitos: La idea del infinito era motivo de horror entre los matemáticos griegos de la época clásica. Pero lentamente penetraba en la mente matemá...
Carlos Pérez Soto sobre el futuro de la economía y la robotización
https://youtu.be/sn1x33Zbfx0?t=3197
Ahora, un montón más de datos sobre este tema y otros relacionados
Iñigo Errejón ha traido a la actualidad política un tema importantísimo, el de la salud mental, en medio de la pandemia y de la polarización política con la que las élites pretenden consolidar su dominación.
Conviene analizar el aspecto social y político de la enfermedad mental y la responsabilildad del neoliberalismo, que en definitiva no es sino el trasunto político del capitalismo exacerbado, en la prevalencia de la enfermedad mental en nuestra sociedad y de su mal tratamiento.
Jon Juanma: In Time, comunismo made in Hollywood: In Time , comunismo made in Hollywood (Crítica de la película de Andrew Niccol, Justin Timberlake y Amanda Seyfried) Autor:...
Un blog con información diferente a la habitual, a la hegemónica, sobre Rusia, sobre China y sobre algunos temas de geopolítica
Pretendo presentar enlaces a documentos cuya lectura permita al usuario hacerse una idea del pensamiento de este filósofo contemporáneo, fundamental para armar teóricamente un movimiento popular capaz de enfrentar la crisis global civilizatoria a que nos lleva, con más rapidez de la que la mayoría imagina, el capitalismo.
https://twitter.com/filosmates/status/1393288068367589383?s=20 https://twitter.com/filosmates/status/1393288068367589383?s=20
https://twitter.com/filosmates/status/1393288068367589383?s=20 ht://twitter.com/filosmates/status/1393288068367589383?s=20
Introducción a la filosofía de Gustavo Bueno
https://www.youtube.com/watch?v=CIAFAZdJUdU
A continuación los enlaces
Lo mejor de lo que recopilé en aquella entrada
Cayó la Unión Soviética, y con ella sus paises satélites, y dijeron: el comunismo ha fracasado. Para colmo, China se pasó al lado capitalista. No había otro sistema posible para organizar la sociedad que el capitalismo.
https://www.youtube.com/playlist?list=PLAnA8FVrBl8DF03y6o-AIYPLK12F1IA25
LA IDEA DE TENSOR SEGÚN CHATGTP (añadido el 4 de Enero de 2025)
Un tensor es un concepto matemático que generaliza las ideas de escalar, vector y matriz, permitiéndonos describir relaciones y propiedades en sistemas más complejos, como fuerzas, deformaciones o campos físicos en múltiples dimensiones. Se usan mucho en física, ingeniería y matemáticas para trabajar con conceptos como la relatividad, la elasticidad y los campos electromagnéticos.
Para explicarlo de manera accesible, partamos de lo básico:
Un escalar es simplemente un número, como , o . Describe algo que no tiene dirección, solo tamaño o magnitud.
Ejemplo:
Un vector es un conjunto de números que indican una magnitud y una dirección. En un espacio tridimensional, podemos representar un vector como .
Ejemplo:
Una matriz es una tabla de números con filas y columnas. Representa relaciones más complejas, como las fuerzas en varias direcciones.
Ejemplo:
Un tensor de orden superior se construye combinando vectores o matrices en formas más complejas. Piensa en un "cubo de números" (orden 3) o incluso una figura en más dimensiones (orden mayor).
Ejemplo:
Un tensor se describe como una colección organizada de números (componentes) en diferentes dimensiones:
Los tensores permiten trabajar con relaciones en múltiples dimensiones. Son como un lenguaje universal para describir fenómenos complejos, desde la deformación de un puente hasta las ondas gravitacionales detectadas por LIGO.
¿Te gustaría que amplíe algún ejemplo en particular?
¡Entendido! A continuación, escribo la definición de tensores directamente en espacios vectoriales de dimensión 2, junto con las propiedades correspondientes, sin pasar primero por el caso general.
Sea un espacio vectorial de dimensión 2 sobre un cuerpo (como o ), con una base fija . El espacio dual , que contiene las formas lineales (funcionales lineales sobre ), tiene la base dual , definida por (delta de Kronecker).
Un tensor de tipo : Es un escalar, es decir, un número .
Un tensor de tipo : Es un vector en , que se puede escribir como:
donde son las componentes del vector.
Un tensor de tipo : Es una forma lineal (elemento de ), que se escribe como:
donde son las componentes de la forma lineal.
Un tensor de tipo : Es una aplicación lineal de en sí mismo, que se representa en coordenadas como una matriz:
donde son las componentes del tensor.
Un tensor de tipo : Es una combinación lineal de productos tensoriales de vectores, expresada como:
Un tensor de tipo : Es una combinación lineal de productos tensoriales de formas lineales:
Un tensor de tipo : Es una combinación lineal de productos tensoriales de dos vectores con una forma lineal:
Linealidad:
Los tensores son lineales en cada una de sus entradas. Si es un tensor de tipo , para y :
Transformación bajo cambio de base:
Si se cambia la base del espacio , las componentes del tensor se transforman de manera específica:
Simetría:
Un tensor de tipo es simétrico si para todos los índices . Es antisimétrico si .
Contracción:
Si es un tensor de tipo en , su traza es la contracción de sus índices:
Esto produce un escalar (tensor de tipo ).
Producto tensorial:
Si y , el producto tensorial es un tensor de tipo , que actúa sobre como:
Representación matricial:
Un tensor de tipo puede representarse como una matriz que transforma vectores. Si , donde es una matriz de , entonces:
¿Te gustaría que desarrolle ejemplos concretos de estas propiedades en un contexto físico o geométrico?
¿Hay tensores de tipo (3,2) cuando estamos en un espacio vectorial de dimensión 2 ? Si los hay ponme un par de ejemplos
¡Sí, existen tensores de tipo en un espacio vectorial de dimensión 2! La definición no depende de la dimensión del espacio, aunque la cantidad de componentes del tensor sí está limitada por ella.
Un tensor de tipo en un espacio vectorial de dimensión 2 es un elemento del espacio:
donde:
En coordenadas, un tensor de tipo se escribe como:
donde:
Un tensor de tipo toma como entrada dos formas lineales (elementos de ) y devuelve un vector de en cada una de las tres copias de .
En un espacio vectorial de dimensión 2:
Por lo tanto, un tensor de tipo tiene componentes independientes.
Supongamos que el tensor está definido por:
En coordenadas explícitas, esto significa que las únicas componentes no nulas son:
Este tensor puede interpretarse como un operador que "concentra" la acción sobre las entradas que tienen la misma dirección.
Sea definido por:
Por ejemplo:
El tensor tiene valores asignados según una regla específica, que puede usarse en aplicaciones dependiendo del problema físico o geométrico.
Aunque los tensores de tipo pueden parecer abstractos, aparecen en problemas avanzados, como:
¿Te gustaría que calculemos algo específico con uno de estos tensores?
Sigue leyendo en este enlace para ver la continuación y para ver bien TODAS las fórmulas
Enlace a tres clases on line del profesor Carlos Pérez Soto, y a algunos materiales complementarios, que son bastantes.
Enlaces a diferentes demostraciones
Ése es el título de un estupendo libro de David Harvey. Sobre la obra y el autor va esta entrada (o, si quieres, post)
Charla de Carlos Pérez Soto sobre marxismo hegeliano
Otros enlaces de interés